24 research outputs found

    Hindrance of ^{16}O+^{208}Pb fusion at extreme sub-barrier energies

    Full text link
    We analyze the fusion data for 16^{16}O+208^{208}Pb using coupled-channels calculations. We include couplings to the low-lying surface excitations of the projectile and target and study the effect of the (16^{16}O,17^{17}O) one-neutron pickup. The hindrance of the fusion data that is observed at energies far below the Coulomb barrier cannot be explained by a conventional ion-ion potential and defining the fusion in terms of ingoing-wave boundary conditions (IWBC). We show that the hindrance can be explained fairly well by applying the M3Y double-folding potential which has been corrected with a calibrated, repulsive term that simulates the effect of nuclear incompressibility. We show that the coupling to one-neutron transfer channels plays a crucial role in improving the fit to the data. The best fit is achieved by increasing the transfer strength by 25% relative to the strength that is required to reproduce the one-neutron transfer data. The larger strength is not unrealistic because the calculated inelastic plus transfer cross section is in good agreement with the measured quasielastic cross section. We finally discuss the problem of reproducing the fusion data at energies far above the Coulomb barrier. Here we do not account for the data when we apply the IWBC but the discrepancy is essentially eliminated by applying the M3Y+repulsion potential and a weak, short-ranged imaginary potential.Comment: text and 8 fifure

    Exact Stochastic Mean-Field dynamics

    Full text link
    The exact evolution of a system coupled to a complex environment can be described by a stochastic mean-field evolution of the reduced system density. The formalism developed in Ref. [D.Lacroix, Phys. Rev. E77, 041126 (2008)] is illustrated in the Caldeira-Leggett model where a harmonic oscillator is coupled to a bath of harmonic oscillators. Similar exact reformulation could be used to extend mean-field transport theories in Many-body systems and incorporate two-body correlations beyond the mean-field one. The connection between open quantum system and closed many-body problem is discussed.Comment: Proceedings series of Proceedings of "FUSION08: New Aspects of Heavy Ion Collisions near the Coulomb Barrier", September 22-26, 2008, Chicago, US

    Fusion at deep subbarrier energies: potential inversion revisited

    Get PDF
    For a single potential barrier, the barrier penetrability can be inverted based on the WKB approximation to yield the barrier thickness. We apply this method to heavy-ion fusion reactions at energies well below the Coulomb barrier and directly determine the inter-nucleus potential between the colliding nuclei. To this end, we assume that fusion cross sections at deep subbarrier energies are governed by the lowest barrier in the barrier distribution. The inverted inter-nucleus potentials for the 16^{16}O +144^{144}Sm and 16^{16}O +208^{208}Pb reactions show that they are much thicker than phenomenological potentials. We discuss a consequence of such thick potential by fitting the inverted potentials with the Bass function.Comment: 8 pages, 5 figures. Uses aipxfm.sty. A talk given at the FUSION08: New Aspects of Heavy Ion Collisions Near the Coulomb Barrier, September 22-26, 2008, Chicago, US

    Extraction of nucleus-nucleus potential and energy dissipation from dynamical mean-field theory

    Full text link
    Nucleus-nucleus interaction potentials in heavy-ion fusion reactions are extracted from the microscopic time-dependent Hartree-Fock theory. When the center-of-mass energy is much higher than the Coulomb barrier energy, extracted potentials identify with the frozen density approximation. As the center-of-mass energy decreases to the Coulomb barrier energy, potentials become energy dependent. This dependence indicates dynamical reorganization of internal degrees of freedom and leads to a reduction of the "apparent" barrier. Including this effect leads to the Coulomb barrier energy very close to experimental one. Aspects of one-body energy dissipation extracted from the mean-field theory are discussed.Comment: 6 pages, 5 figures. Uses aipxfm.sty. A talk given at the FUSION08: New Aspects of Heavy Ion Collisions Near the Coulomb Barrier, September 22-26, 2008, Chicago, US

    Transfer and breakup of light weakly-bound nuclei

    Get PDF

    Coupled-Channels Approach for Dissipative Quantum Dynamics in Near-Barrier Collisions

    Get PDF
    A novel quantum dynamical model based on the dissipative quantum dynamics of open quantum systems is presented. It allows the treatment of both deep-inelastic processes and quantum tunneling (fusion) within a fully quantum mechanical coupled-channels approach. Model calculations show the transition from pure state (coherent) to mixed state (decoherent and dissipative) dynamics during a near-barrier nuclear collision. Energy dissipation, due to irreversible decay of giant-dipole excitations of the interacting nuclei, results in hindrance of quantum tunneling.Comment: 8 pages, 4 figures, Invited talk by A. Diaz-Torres at the FUSION08 Conference, Chicago, September 22-26, 2008, To appear in AIP Conference Proceeding

    Decay Rate of Triaxially-Deformed Proton Emitters

    Full text link
    The decay rate of a triaxially-deformed proton emitter is calculated in a particle-rotor model, which is based on a deformed Woods-Saxon potential and includes a deformed spin-orbit interaction. The wave function of the I=7/2−I=7/2^{-} ground state of the deformed proton emitter 141^{141}Ho is obtained in the adiabatic limit, and a Green's function technique is used to calculate the decay rate and branching ratio to the first excited 2+^{+} state of the daughter nucleus. Only for values of the triaxial angle γ\gamma <5∘<5^{\circ} is good agreement obtained for both the total decay rate and the 2+^{+} branching ratio.Comment: 19 pages, 4 figure

    Mass Distributions Beyond TDHF

    Full text link
    The mass distributions for giant dipole resonances in 32S and 132Sn decaying through particle emission and for deep-inelastic collisions between 16O nuclei have been investigated by implementing the Balian-Veneroni variational technique based upon a three-dimensional time-dependent Hartree-Fock code with realistic Skyrme interactions. The mass distributions obtained have been shown to be significantly larger than the standard TDHF results.Comment: 6 pages, 2 figures, Based on talk by J. M. A. Broomfield at the FUSION08 Conference, Chicago, September 22-26, 2008. Conference proceedings to be published by AI
    corecore